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Abstract:  

Powered by artificial intelligence (AI), particularly deep neural networks, computer aided 

detection (CAD) tools can be trained to recognize TB-related abnormalities on chest radiographs, 

thereby screening large numbers of people and reducing the pressure on healthcare 

professionals. Addressing the lack of studies comparing the performance of different products, 

we evaluated five AI software platforms specific to TB: CAD4TB (v6), InferRead®DR (v2), Lunit 

INSIGHT for Chest Radiography (v4.9.0) , JF CXR-1 (v2) by and qXR (v3) by on an unseen dataset 

of chest X-rays collected in three TB screening center in Dhaka, Bangladesh. The 23,566 

individuals included in the study all received a CXR read by a group of three Bangladeshi board-

certified radiologists. A sample of CXRs were re-read by US board-certified radiologists. Xpert was 

used as the reference standard. All five AI platforms significantly outperformed the human 

readers. The areas under the receiver operating characteristic curves are qXR: 0.91 (95% CI:0.90-

0.91), Lunit INSIGHT CXR: 0.89 (95% CI:0.88-0.89), InferReadDR: 0.85 (95% CI:0.84-0.86), JF CXR-

1: 0.85 (95% CI:0.84-0.85), CAD4TB: 0.82 (95% CI:0.81-0.83). We also proposed a new analytical 

framework that evaluates a screening and triage test and informs threshold selection through 

tradeoff between cost efficiency and ability to triage. Further, we assessed the performance of 

the five AI algorithms across the subgroups of age, use cases, and prior TB history, and found that 

the threshold scores performed differently across different subgroups. The positive results of our 

evaluation indicate that these AI products can be useful screening and triage tools for active case 

finding in high TB-burden regions. 
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Introduction 

The improved theoretical understanding in AI technology, the ubiquity of large annotated 

datasets, and the advance in computer power have fostered a rapid expansion of the AI industry 

in medical diagnosis(1). Until recently, the most accurate AI methods for image analysis 

required manual segmentation and computation of specific features annotated by experts. Since 

the beginning of the decade, deep learning in neural networks is increasingly being used to 

analyze medical images, such as chest x-rays (CXR)(2, 3).  

CXR is recommended by the World Health Organization (WHO) as a screening and triage tool for 

tuberculosis (TB)(4), a disease which kills more people than any single infectious disease world-

wide(5). The use of CXR as a diagnostic tool is limited due to high inter-and intra-reader variability 

and low specificity (4). For these reasons it was discouraged by WHO as part of TB strategies for  

many years(6). Additionally, there is a lack of qualified radiologists who can read CXR films in 

many high TB burden countries (4). However, studies (4, 7-9) have demonstrated the use of CXR 

as a triage tool to reduce the number of follow on tests required which is a growing concern for 

numerous active case finding programs. As the number of interventions employing active case 

finding which screen large numbers of people with CXR has grown in recent years, having the CXR 

images read quickly to make testing decisions is of great importance (4, 7). 

AI technology presents a promising solution to overcome these obstacles. Such technology 

makes use of neural networks and deep learning to identify TB-related abnormalities on chest 

radiographs. Inspired by the human nervous system, neural networks are interconnected 

functions, each comprised of a weight and a bias coefficient. In deep learning, the networks are 

trained in multiple hidden layers using large sets of known positive and negative cases (ground 

truth). The networks “learn” by adjusting the weights and biases of the underlying functions 

based on the difference between predictions and ground truth, a process called back-

propagation(10). A complex deep learning network can modify and ‘train’ itself using a large 

training dataset, enabling it to identify new and unseen data (10).  
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How exactly deep neural networks detect TB abnormality is unclear, even to those who 

developed them, and how the networks are constructed are fiercely guarded trade secrets, 

earning deep neural network the “black box” reputation, i.e. lack of interpretability(10). 

Furthermore, often the marketed accuracy of AI software is done on the same data superset for 

training, testing and validation and cannot be generalized to other settings (11). 

Several AI companies have emerged in recent years promising to quickly screen digital chest-

radiographs to identify people in need of further confirmation testing for TB. While there is 

evidence that improvements with new versions of software are improving performance (12), 

current scientific evidence is limited and mostly available for an early version of one product, 

CAD4TB (Delft Imaging Systems, Netherlands) (9, 13-17). In the last year, two peer-reviewed 

publications (8, 18) on the performance of other AI software for detecting TB abnormalities with 

relatively small datasets have been published. WHO has not made a recommendation on the use 

of automated reading systems for TB due to the current lack of evidence, (4) yet interest in and 

use of the technology is growing rapidly and more evaluations are required to provide end-users 

useful analysis to make decisions about different AI solutions. Most evaluations of AI technology 

for CXR focus on one metric which is the area under the ROC curve (12). However, the possible 

uses of AI for CXR in TB case finding are varied. A more nuanced evaluation of AI algorithms can 

better assist both developers to improve their products and end users to decide on product 

selection. In response to this, we evaluated multiple AI software for TB screening and triage using 

a large dataset that has not been used to train commercial AI products (4) to help implementers 

to assess the diagnostic accuracy of these algorithms. 

Methods 

AI software selection 

This evaluation of AI software to read CXR for TB followed the Standards for Reporting of 

Diagnostic Accuracy (STARD) Initiative on design and conduct of diagnostic accuracy evaluations 

(19). We identified five AI software platforms with stable version control through the network 

and the database of innovators developed under the TB REACH initiatives and the Accelerator for 
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Impact (a4i) project at Stop TB Partnership to include in this study. The software platforms were: 

CAD4TB (v6), InferRead®DR (v2) by Infervision (China), Lunit INSIGHT for Chest Radiography 

(v4.9.0) developed by Lunit (South Korea), JF CXR-1 (v2) developed by JF Healthcare (China) and 

qXR (v3) developed by Qure.ai (India). All AI algorithms produce a continuous abnormality score 

(from 0 to 100 or from 0 to 1) which represents the probability of presence of TB. Users can set 

the abnormality or threshold score at any level to decide who should be further evaluated for TB. 

There is a tradeoff between sensitivity and specificity as the scores change, with the higher the 

score being the most specific and lower scores being more sensitive. 

 

Sample and image collection 

We collected the CXR images from all adults (> 15 years) who presented consecutively to any of 

the three TB Screening Centres established by icddr,b, with funding from the Stop TB 

Partnership’s TB REACH Initiative, between 15 May 2014 and 4 October 2016. The patients visited 

the TB centres were mostly referred by private and public health providers or referred from one 

of the 133 NTP facilities across Dhaka to test for TB. There were also some walk-in clients. After 

providing informed consent, each participant was verbally screened for TB symptoms, and 

received a posterior-anterior CXR using digital X-ray machines (Delft EZ DR X-ray). All individuals 

were asked to submit a sputum sample for testing with the Xpert MTB/RIF assay (Xpert). The 

Xpert test was repeated if the initial test failed (invalid, error, or no result). The final Xpert results 

were used as the bacteriological evidence and reference standard in this evaluation.  

 

Image reading  

A group of three Bangladeshi, board-certified radiologists (all with MD/ FCPS or both degree in 

radiology and 10, 6 and 1 years of experience as of 2014) (Table 1) read all the CXR images 

remotely. Each CXR was read by one of the three Bangladeshi radiologists using the following 

four categories (definitions in Table 2). The radiologists were blinded to all testing results and 

clinical and demographic data. They provided standard radiology reports and in addition, graded 

each CXR image as either highly suggestive of TB, possibly TB, any abnormality, and normal. In 

addition, we had a sample of all images re-read by US board certified radiologists. The sample 
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consisted of the CXR images from bacteriologically positive (Bac+) patients who were missed by 

the Bangladeshi radiologists and missed by different AI products, as well as the image from Bac+ 

patients that were detected by the Bangladeshi radiologists but missed by different AI products 

(Supplementary Information, Table 2).  

Table 1. Bangladeshi, Board-certified Radiologists  

 DEGREE 1 YEAR DEGREE 2 YEAR ESTIMATED READS PER YEAR 

Radiologist 1 MD 2004 FCPS 2011 17 to 18 thousand 

Radiologist 3 MD 2008 - - More than 10 thousand 

Radiologist 2 MD 2014 - - More than 20 thousand 

 

Table 2. Four Categories of Human Reading Categories  

CATEGORIES DEFINITION  
a. Highly Suggestive of TB Highly suggestive of TB only 
b. Possibly TB Including abnormalities highly suggestive of TB and abnormalities 

possibly associated with TB 
c. Any Abnormality Including abnormality highly suggestive of TB, possible associated 

with TB and non-TB abnormality 
d. Normal  

 

The five AI algorithms scored the images remotely through Secured File Transfer Protocol from 

the Stop TB repository except for CAD4TB, which read data that was shared through cloud 

transfer. All machine reading was performed independently, with the developers blinded to all 

clinical and demographic data, and ground truth. 

Data Analysis 

We first compared the performance of the group of three Bangladeshi radiologists and the five 

AI algorithms, using bacteriological Xpert results as the ground truth. We calculated the 

sensitivity and specificity of the radiologists’ readings for each of the abnormal categories. The 

threshold scores of each of the AI algorithms were calculated to produce the same dichotomized 

decisions as the radiologists in terms of sensitivity for each reading category. We then compared 
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the difference in specificity of the human reading and of the predictions from the five AI 

algorithms using McNemar test for paired proportions. 

We then compared the overall performance of the five AI algorithms using the area under 

receiver operating characteristic (ROC) curves (AUC), which show the tradeoff between 

sensitivity and specificity with varying thresholds. However, since the occurrence of TB and not 

TB is imbalanced (many more negatives than positives), we also calculated the area under 

Precision-Recall (PRC) curve (PRAUC), which shows precision values for corresponding sensitivity 

values and is more informative than the ROC curve when evaluating a binary classifier on 

imbalanced datasets (20). 

We proposed a new analytical framework to evaluate screening and triage tests with continuous 

numeric output, and to better understand threshold selection by factoring in cost efficiency and 

the ability to triage. We assumed a triage algorithm whereby all adults presenting to the TB 

centres would be screened by CXR interpreted by each AI algorithm and only those with an 

abnormality score above a pre-specified threshold would receive the confirmation test by Xpert.  

We calculated the proportion of subsequent Xpert assays saved as a proxy of cost efficiency of  

this triage test (with 0% representing the Xpert testing-for-all scenario) and the number of people 

needed to test (NNT) to find one Bac+ individual indicating the ability to triage. We plotted the 

sensitivity against the proportion of Xpert saved to show the tradeoff between finding as many 

Bac+ patients as possible and the cost savings of each AI algorithm. To help our understanding of 

threshold selection, we produced visualizations between sensitivity, proportion of Xpert saved 

and NNT with varying threshold scores in a three-way plot. We assessed the distribution of 

abnormality scores disaggregated by Xpert results and prior history of TB. The Mann-Whitney U 

test was used to compare non-normal distribution. Finally, since the same threshold scores may 

provide different results in different populations, we evaluated the performance of the AI 

algorithms disaggregated by age, prior TB history and use cases using AUC and PRAUC. 
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Ethics 

All enrolled participants provided informed written consent. The study protocol was reviewed 

and approved by the Research Review Committee and the Ethical Review Committee at the 

International Centre for Diarrheal Disease Research, Bangladesh (icddr,b). 

Role of the AI Developers 

The AI developers had no role in study design, data collection, analysis plan, or writing of the 

study. The developers only had access to the CXR images, and did not receive any of the 

demographic, symptom, medical, or testing data of the participants. 

Results 

A total of 24,031 people were consecutively recruited from the three TB centres. Excluding 17 

people without a CXR, 138 children younger than 15 years old and 342 individuals who came 

from community screening or contact tracing, we included 23,566 (98.1%) individuals in this 

analysis. The median age was 42.0 [30.0, 58.0], 32.9% were female, and almost all (98.5%) 

reported at least one TB-related symptom. The most common symptoms were cough (89.9%), 

fever (79.7%), weight loss (63.0%), and shortness of breath (54.7%). Hemoptysis was reported by 

3.0% participants. The final sample included 3,538 (15.0%) participants who had a history of prior 

TB treatment. The prevalence of Bac+ TB confirmed by Xpert was 15.4% overall (n=3,633). Among 

Bac+ individuals, 4.82% (n=175) were resistant to rifampicin. The radiologists graded 3,619 

(15.4%) radiographs as Highly Suggestive of TB, 10,695 (45.4%) radiographs as Possibly TB, 14,282 

(60.6%) radiographs as Any Abnormality while 9,284 (39.4%) were read as normal. All images 

used in this study were taken by Delft Easy DR X-ray System with 50KW X-ray generator Canon 

CXDI 35x43cm X-ray detector.  

More than three quarters (n=17,542, 76.2%) of the participants were referred by public sector or 

private health providers; 2,992 (13%) participants self-presented (labelled walk in) to the TB 

centres; and 2,496 (10.8%) participants were first tested in NTP DOTS facilities but had negative 
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results with smear test and were referred for Xpert testing (Table 3). Across the three groups, 

the prevalence of Bac+ TB was lowest among walk-ins, n=204 (6.8%), and highest in the NTP DOTS 

retested subgroup, n=436 (17.5%) (Table 3). 
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Table 3 Characteristics of the 23,566 individuals included in this study 

  
  

Overall  
N = 23,566 

  

Bacteriological reference Use cases 

Bac Positive   Bac Negative  Private & Public 
Referral 

Public DOTS 
Retesting Walk In 

N = 3,633 N = 19,933 N = 17,542 N = 2,496 N = 2,992 
Age (median [IQR]) 42.0 [30.0, 58.0] 37.0 [27.0, 53.0] 43.0 [31.0, 58.0] 44.0 [30.0, 58.0] 37.0 [28.0, 52.0] 38.0 [30.0, 53.0] 
Age Group (%) 
   Young age (15-25 years) 2621 (11.1) 658 (18.1) 1963 (9.8) 1893 (10.8) 376 (15.1) 287 (9.6) 
   Middle age (25-60 years) 15779 (67.0) 2349 (64.7) 13430 (67.4) 11423 (65.1) 1777 (71.2) 2239 (74.8) 
   Old age (⩾ 60 years) 5166 (21.9) 626 (17.2) 4540 (22.8) 4226 (24.1) 343 (13.7) 466 (15.6) 
Gender = Female (%) 7746 (67.1) 1048 (71.2) 6698 (66.4) 5803 (66.9) 971 (61.1) 772 (74.2) 
Cough = Yes (%) 21157 (89.9) 3378 (93.1) 17779 (89.3) 15750 (89.9) 2233 (89.5) 2692 (90.1) 
Fever = Yes (%) 18771 (79.7) 3164 (87.2) 15607 (78.4) 14128 (80.6) 2090 (83.8) 2151 (72.0) 
Short of breath = Yes (%) 12851 (54.7) 2037 (56.1) 10814 (54.4) 9857 (56.3) 1265 (50.7) 1541 (51.7) 
Weight Loss = Yes (%) 14823 (63.0) 2744 (75.6) 12079 (60.7) 11240 (64.1) 1726 (69.2) 1525 (51.0) 
Hemoptysis = Yes (%) 3063 (13.0) 463 (12.8) 2600 (13.1) 2211 (12.6) 387 (15.5) 384 (12.9) 
Any symptom(s) = Yes (%) 23210 (98.5) 3603 (99.2) 19607 (98.4) 17291 (98.6) 2469 (98.9) 2928 (97.9) 
Radiologists grading (%) 
   Highly suggestive of TB 3619 (15.4) 1414 (38.9) 2205 (11.1) 2835 (16.2) 510 (20.4) 207 (6.9) 
   Possibly TB 10695 (45.4) 3214 (88.5) 7481 (37.5) 8612 (49.1) 1195 (47.9) 699 (23.4) 
   Any abnormality 14282 (60.6) 3453 (95.0) 10829 (54.3) 11353 (64.7) 1477 (59.2) 1108 (37.0) 
   Normal 9,284 (39.4%) 180 (5.0) 9104 (45.7) 6189 (35.3) 1019 (40.8) 1884 (63.0) 
TB History = Yes (%) 3538 (15.0) 600 (16.5) 2938 (14.8) 2562 (14.6) 597 (23.9) 294 (9.8) 
Xpert positive (%) 3633 (15.4)   2922 (16.7) 436 (17.5) 204 (6.8) 
  MTB Burden (%)             
     Very Low  626 (17.2)  507 (17.3) 74 (17.0) 34 (16.7) 
     Low  1085 (29.9)  840 (28.7) 160 (36.7) 59 (28.9) 
     Medium  1282 (35.3)  1046 (35.7) 145 (33.3) 74 (36.3) 
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     High  639 (17.6)  534 (18.2) 57 (13.1) 37 (18.1) 
  RIF Result (%)             
 Detected  174 (4.8)  130 (0.7) 31 (1.2) 11 (0.4) 
   Not Detected  3444 (94.8)  17401 (99.2) 2463 (98.7) 2979 (99.6) 
   Indeterminate  14 (0.4)  11 (0.1) 2 (0.1) 1 (0.0) 
Use Case (%)             
   Private & Public Referral 17542 (76.2) 2922 (82.0) 14620 (75.1)    
   Public DOTS Retesting 2496 (10.8) 436 (12.2) 2060 (10.6)    
   Walk-in 2992 (13.0) 204 (5.7) 2788 (14.3)    
AI prediction (median [IQR]) 
   CAD4TB  58.0 [46.0, 77.0] 81.0 [72.0, 89.0] 53.0 [45.0, 71.0] 62.0 [47.0, 78.0] 56.0 [45.0, 76.0] 46.0 [32.0, 56.0] 
   qXR (%) 24.0 [3.0, 79.0] 89.0 [82.0, 93.0] 12.0 [2.0, 61.0] 36.0 [4.0, 81.0] 21.0 [3.0, 77.0] 3.0 [2.0, 19.0] 
   Lunit INSIGHT CXR (%) 30.0 [2.0, 87.0] 95.0 [88.0, 97.0] 10.0 [2.0, 76.0] 45.0 [3.0, 88.0] 33.0 [2.0, 88.0] 3.0 [1.0, 24.0] 
   JF CXR-1 (%) 85.4 [8.3, 99.8] 100 [99.6, 100] 59.2 [5.4, 99.3] 93.6 [13.7, 99.9] 85.4 [7.1, 99.9] 11.0 [2.0, 81.1] 
   InferReadDR (%) 28.4 [13.6, 65.0] 74.9 [59.3, 83.2] 22.2 [12.6, 54.1] 33.8 [14.8, 66.9] 29.9 [13.3, 68.7] 15.6 [10.7, 29.4] 
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Comparison between Radiologists’ Reading and Prediction of the AI algorithms 

Table 4 Comparison of sensitivity and specificity between radiologists’ reading and the 

predictions of the AI algorithms 

Bangladeshi Radiologist AI algorithms 
Composite Human 
Reader Categories 

Sensitivity Specificity Product Threshold 
Score 

Specificity Specificity 
Improvement (95%CI) 

Highly Suggestive of TB 
(including abnormalities 
highly suggestive of TB 
only)  

38.9%, 
(37.3-
40.5%) 

88.9%, 
(88.5-
89.4%) 

CAD4TB 84 90.5% (90.1-90.9%) 1.54% (0.94-2.14%) 
InferReadDR 0.79 94.2% (93.8-94.5%) 5.23% (4.68-5.78%) 
JF CXR-1 1.00 93.5% (93.1-93.8%) 4.55% (3.99-5.11%) 
Lunit 
INSIGHT CXR 

0.96 98.0% (97.8-98.1%) 9.02% (8.54-9.50%) 

qXR 0.91 97.9% (97.7-98.1%) 8.9% (8.45-9.42% 
Probably TB (including 
abnormalities highly 
suggestive of TB and 
possibly associated with 
TB) 

88.5%, 
(87.4-
89.5%) 

62.5%, 
(61.8-
63.1%) 

CAD4TB 63 64.8% (64.1-65.4%) 2.32% (1.37-3.27%)  
InferReadDR 0.37 64.5% (63.8-65.1%) 2.01% (1.06-2.96%) 
JF CXR-1 0.95 64.1% (63.4-64.7%) 1.62% (0.66-2.57%) 
Lunit 
INSIGHT CXR 

0.66 70.3% (69.7-71.0%) 7.87% (6.95-8.80%) 

qXR 0.64 76.7% (76.1-77.2%) 14.2% (13.3-15.1%) 
Any Abnormality 
(including abnormalities 
highly suggestive of TB, 
possibly associated with 
TB and other non-TB 
associated 
abnormalities) 

95.0%, 
(94.3-
95.7%) 

45.7%, 
(45.0-
46.4%) 

CAD4TB  53  51.3% (50.6-52.0%)  5.60% (4.62-6.59%)  
InferReadDR 0.20 47.5% (46.8-48.2%) 1.80% (0.82-2.78%) 
JF CXR-1 0.53 49.0% (48.3-49.7%) 3.31% (2.32-4.29%) 
Lunit 
INSIGHT CXR 

0.07 47.8% (47.1-48.5%) 2.16% (1.17-3.14%) 

qXR  0.35 63.5% (62.9-64.2%) 17.9% (16.9-18.8%) 
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All five AI algorithms performed significantly better than the human readers when we matched 

sensitivities for identifying different abnormalities in all three reading categories. The 

improvement in the specificity of each AI algorithm when we selected threshold scores to 

produce the sensitivity for the different human reading categories are presented in Table 4. The 

grading of “highly suggestive of TB” by the radiologists had a sensitivity of 38.9% (95%CI: 37.3% 

- 40.5%) and a specificity of 88.9% (95%CI: 88.5% - 89.4%). All AI algorithms had better specificity 

at the same sensitivity level and the improvement in specificity ranged from Lunit INSIGHT CXR’s 

9.02% (95%CI = 8.54-9.50%) to CAD4TB’s 1.54% (95%CI = 0.94-2.14%). The radiologists’ sensitivity 

improved for the category “Possibly TB”, 88.5% (95%CI: 87.4% - 89.5%) but with a lower 

specificity of 62.5% (95%CI: 61.8% - 63.1%). Again, all matched AI software significantly 

outperformed human readers. qXR had the highest increase in specificity of 14.2% (13.3-15.1%), 

followed by Lunit INSIGHT CXR, 7.9% (6.95-8.80%). JF CXR-1, InferReadDR and CAD4TB also 

outperformed the radiologists with statistically significant increases in specificity (between 1.62% 

and 2.32%). The radiologists had the highest sensitivity, 95.0% (95%CI: 94.3% - 95.7%) using the 

“any abnormality” classification to triage the follow on Xpert testing However, the corresponding 

specificity was 45.7% (95%CI: 45.0% - 46.4%). In this case, the qXR prediction was 17.9% (16.9-

18.8%) higher in specificity than the radiologists. The predictions of CAD4TB, JF CXR-1, Lunit 

INSIGHT CXR and InferReadDR prediction gained 5.60%, 3.31%, 2.16% and 1.8% in specificity 

respectively (Table 4).  

Performance Comparison of the Five AI algorithms 

The tradeoffs between sensitivity and specificity of the five AI algorithms can be visualized in the 

ROC (Figure 1-a) and precision-recall (Figure 1-b) graphs. The AUCs of the ROC curve from high 

to low are qXR: 0.9079 (95% CI:0.9031-0.9127), Lunit INSIGHT CXR: 0.8861 (95% CI:0.8802-0.892), 

InferReadDR: 0.8489 (95% CI:0.8425-0.8553), JF CXR-1: 0.8485 (95% CI:0.8422-0.8549), CAD4TB: 

0.8226 (95% CI:0.8164-0.8289). We could detect difference in the AUCs amongst all algorithms 

except between JF CXR-1 and InferReadDR which had AUCs with overlapping confidence interval. 

Above the 90% sensitivity mark the ROC curves are not significantly different, except qXR which 

outperforms the other four AI algorithms. The ROC curves and precision recall curves of 
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InferReadDR and JF CXR-1 almost completely overlap. The PR curves and the AUC scores (qXR: 

0.66, Lunit INSIGHT CXR: 0.62, JF CXR-1: 0.51, InferReadDR: 0.50, CAD4TB: 0.38) showed that 

some AI classifiers clearly had lower precision values for some given recall values. Unlike ROC, it 

clearly shows a difference amongst the five AI algorithms.  

 

Figure 1-c shows that all 5 AI algorithms can reduce Xpert testing by at least 50% while 

maintaining a sensitivity above 90% (yellow dotted line). However, as more follow-on tests are 

triaged (especially >60%), the difference in the sensitivity of some AI algorithms became 

statistically significant. In the use case of reducing 2/3 of follow-on Xpert testing (blue dotted 

line), the sensitivity was lowered to 85%-77% with qXR have the highest sensitivity, followed by 

Lunit INSIGHT CXR, JF CXR-1, InferReadDR and CAD4TB.  

Figure 1 Performance Comparison of the five AI algorithms 

a. ROC curves of the five AI algorithms (n=23,566, Bac Pos=3633, Bac Neg=19,933). b. precision recall 

curves of the five AI algorithms (n=23,566, Bac Pos=3633, Bac Neg=19,933). c. the tradeoff between 

sensitivity and the proportion of subsequent Xpert test saved. d. The sensitivity of the five AI algorithms 

with varying threshold cutoff scores. e. the proportion of subsequent Xpert test saved with varying 
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threshold cutoff scores. F. the number needed to test (NNT) of the five AI algorithms with varying threshold 

cutoff scores 

 

 

Although ROC and PR curves indicated that InferReadDR and JF CXR-1  had the same performance, 

the three-way plot (Figure 1-d to Figure 1-f) showing the dynamics of sensitivity, proportion of 
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Xpert saved and NNT with varying threshold scores demonstrated that the two systems 

performed very differently. For most of the decision thresholds (above approximately 0.15), JF 

CXR-1 had a higher sensitivity, but saved fewer Xpert tests and required higher NNT than 

InferReadDR. For instance, at 0.8 cutoff threshold, JF CXR-1 is 93.0% (92.1-93.8%) sensitive, can 

save 48.7% of follow-on Xpert testing, and has NNT of 3.6 (3.5-3.7), compared to InferReadDR 

with only 35.4% (33.9-37.0%) sensitive, but saved 90.5% of Xpert tests and the NNT was 1.8.  

Threshold selection can be informed by checking the performance of a single AI algorithm across 

the three-way plot (Figure 1-d to Figure 1-f). For most of threshold scores (0-0.9), the sensitivity 

JF CXR-1 remained above 90% (Figure 1-d ), the follow-on Xpert test saved remained between 

30% and 60% (Figure 1-e) and the NNT was between 5 and 3 (Figure 1-f). As the cutoff threshold 

increases from 0 to 0.5, the sensitivity of CAD4TB only slowly decreases to 95% (Figure 1-a), the 

proportion of Xpert saved increased to 30% (Figure 1-e) and NNT slowly decreases to 5.5 (Figure 

1-f) as threshold point reaches 0.5; however a further increases in threshold point from 0.5 

results in a sharp decrease in sensitivity and NNT and increases in Xpert saved. The sensitivity of 

Lunit and qXR remains above around 80% for most of the threshold scores (0-0.8) before quickly 

decreasing.  

The results presented in Figure 1-d demonstrate that there is no decision threshold that is 

universally applicable to all AI algorithms. For example, the threshold to achieve at least 90% 

sensitivity for InferReadDR must be below 0.35, below 0.59 for Lunit, 0.60 for CAD4TB and qXR, 

and anywhere below 0.93 for JF CXR-1. 
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Figure 2 Stacked density plot of the distributions of the abnormality scores of five AI algorithms 

disaggregated by Xpert outcomes and by prior TB history. 

The dark and light red bars were Bac negative and the dark and light green bars were Bac positive. 

 

 

 

 

 

The stacked density plot in Figure 2 shows the distributions of the abnormality scores of the five 

AI algorithms disaggregated by Xpert outcomes and by prior TB history. The distributions of the 

five AI algorithms vary considerably, indicating different underlying neural networks and the 
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effect that changing the threshold scores can have for different products. A perfect test would 

show Bac- distribution (red bars) should be left skewed and the Bac+ distribution (green bars) 

would be right skewed with no overlap. Lunit’s, qXR’s and InferReadDR’s density plot 

demonstrated this dichotomization pattern. Although almost all Bac+ participants received high 

abnormality scores (95-100) from JF CXR-1, so did many Bac- individuals. None of the 

distributions of the abnormality scores from the Bac- participants but with prior TB history (the 

dark red bars) is left skewed (InferReadDR: -0.368, qXR: -0.567, Lunit INSIGHT CXR: -1.44, CAD4TB: 

-0.55, and JF CXR-1: -0.912). 

Subgroup Analysis 

Figure 3 The AUCs and PCAUCs of different subgroups. The first row is AUC of ROC curves and the 

second row is the AUC of PR curves.  

Young age (15-25 years old), middle age (25-60 years old), older age (above 60 years old).) 

  

 

We compared the performance of the five AI algorithms across age groups, use cases, and prior 

TB history using AUC and PRAUC. All five AI algorithms performed worse among the older age 
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(above 60 years old) than younger age (15-25 years old) and middle age (25-60 years old) (Figure 

3). The AI algorithms performed best among walk-in individuals based on AUC. However, using 

the PRAUC analysis, the algorithms performed best among individuals who were first tested in 

NTP DOTS facilities but had negative smear results. The AUC and PRAUC were lowest in the 

subgroup of individuals who were referred by other health providers. Large differences in both 

AUC and PRAUC were observed in people with and without prior TB history where the software 

performed better among TB naïve individuals. Due to this, the performance of threshold scores 

varied by the subgroup tested. For example, a score of 0.5 using Lunit INSIGHT was 92.7% 

sensitive among people in the older age group and 50.7% specific while the same threshold score 

produced a sensitivity and specificity of 90.3% and 75.2% for younger people. A CAD4TB score of 

65 among people with no TB history produced a sensitivity of 86.7% and a specificity of 70.1% 

while the same score’s performance was 89.8% and 39.7% respectively, in people with prior TB 

history (data not shown). 

US Board Certified Re-reading 

The results of the sub-analysis using US board certified radiologists showed that different human 

readers will capture some cases and miss others. Of the 108 TB cases that were missed by the 

Bangladeshi radiologists and missed by at least one of the five AI products (at 95% sensitivity), 

the US board certified radiologists correctly identified 31.5% (n=34) having TB related 

abnormalities. The US board certified radiologists missed 19.4% (n=54), of the 278 patients 

detected by the Bangladeshi readers but missed by at least one of the five AI products, while 

correctly identifying 80.6% (n=224). Out of the 72 TB cases that were missed by the Bangladeshi 

radiologists but correctly identified by at least one of the AI products (at 95% sensitivity), 60 

(91.7%) were correctly identified by the US radiologists (83.4% were graded as having TB 

abnormality and only 8.3% were graded as normal) (Table 5). The detailed annotations of all the 

CXRs that were missed by the field readers whereas the AI products were correct, and vice versa, 

are in Supplementary Information, Table 2. 

Table 5 US Board certified radiologists’ reading of selected CXRs from bacteriologically confirmed 

TB patients. Missed by AI products at using 95% Sensitivity thresholds.  



19 
 

 
US board certified radiologists 

TB-related 
Abnormalities 

All 
Abnormalities 

Normal Total 

Bac+ patients missed by the Bangladeshi certified radiologists AND 
missed by 1 AI product 5 41.7% 0 0.0% 7 58.3% 12 
missed by 2 AI products 8 61.5% 0 0.0% 5 38.5% 13 
missed by 3 AI products 4 25.0% 0 0.0% 12 75.0% 16 
missed by 4 AI products 6 28.6% 3 14.3% 12 57.1% 21 
missed by 5 AI products 11 23.9% 3 6.5% 32 69.6% 46 

Sub-total 34 31.5% 6 5.6% 68 63.0% 108 
Bac+ patients detected by the Bangladeshi certified radiologists BUT 

missed by 1 AI product 151 91.0% 12 7.2% 3 1.8% 166 
missed by 2 AI products 44 72.1% 12 19.7% 5 8.2% 61 
missed by 3 AI products 15 71.4% 5 23.8% 1 4.8% 21 
missed by 4 AI products 12 50.0% 5 20.8% 7 29.2% 24 
missed by 5 AI products 2 33.3% 1 16.7% 3 50.0% 6 

Sub-total 224 80.6% 35 12.6% 19 6.8% 278 
Bac+ patients missed by 
Bangladeshi certified radiologists 
ONLY  

60 83.3% 6 8.3% 6 8.3% 72 

Total  318 69.4% 47 10.3% 93 20.3% 458 
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Discussion 

Although how the five AI algorithms were built and what population composition was included 

in each training set remain unknown to us and the general public, our study shows that the 

predictions made by the five algorithms significantly outperform experienced Bangladeshi 

human readers in detecting TB-associated abnormalities. To our knowledge, this is the largest 

independent study of multiple AI algorithms as a screening and triage tests for TB with CXR and 

the first published evaluation of JF CXR-1 and InferReadDR for detecting TB. Although the AUCs 

presented in this study are lower than those in a previous independent evaluation (8), both 

studies demonstrated the AI algorithms have great clinical potential in high TB burden countries 

which are mostly resource limited and outperform human readers across settings. Notably, the 

local readers had access to patient clinical and demographic information when making the 

decisions. By contrast, the AI algorithms only processed the chest radiographs. The AUCs and 

PRAUCs indicate that all AI algorithms perform very well and qXR and Lunit INSIGHT CXR are the 

two top performers in detecting TB related abnormalities while CAD4TB had the lowest AUC and 

PRAUC. JF CXR-1 and InferReadDR have similar performance between Lunit INSIGHT CXR and 

CAD4TB.   

The results of our analysis also demonstrate the importance of looking beyond ROC and even 

precision recall curves when evaluating a screening or triage test. The ROC curve is almost 

universally used to describe the performance of AI algorithms for CXR interpretation(12, 17, 21, 

22). However, it provides only one statistical measure which comprises the entirety of the test’s 

performance rather than within a specific program, and its appropriateness for evaluation in 

most health applications screening or triage for TB is not clear given the lower prevalence of TB 

in most situations (23).  

In this study we illustrated a new analytical framework to evaluate screening and triage tests with 

continuous output, and to understand threshold selection using diagnostic tests saved and NNT 

to measure the cost efficiency and the ability to triage using AI to read CXR. We observed that 

automated reading of CXR by each of the AI algorithms before receiving a confirmation Xpert test 

is highly sensitive and can save large proportions of the subsequent confirmatory tests. The plot 
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of sensitivity against Xpert saved of the AI algorithms demonstrated that saving up to 50% Xpert 

tests while maintaining sensitivity above 90% is feasible. In the hypothetical situation discussed 

in the results where 95% sensitivity is required, the difference between the different AI products 

in terms of Xpert saved can be large (48% vs 41%). As the sensitivity reduces, we observed that 

the differences in proportion of Xpert saved is even bigger, which can have significant cost 

implication for large case finding programs that cannot expect to use the most sensitive threshold 

scores (9).  

Additionally, the three-way plot of sensitivity, Xpert saved and NNT with varying threshold cutoff 

points indicates the difference in products that may have very similar performance on ROC and 

precision recall curves. From the three-way plot and the density plot of the distribution of the 

abnormality scores of the five AI algorithms disaggregated by Xpert results, it is clear that 

underlying neural networks of the five AI algorithms were constructed very differently and that 

there is no universal threshold cutoff scores that can be applicable to all AI algorithms. Moreover, 

even using the same AI algorithm, the density plots of the Bac- individual with prior TB history 

indicates the algorithms’ poor ability to differentiate between old scarring and active lesions, 

which can lead to excessive recall in this group.  

Our results show that users could choose any point between 0 and 0.9 when using JF CXR-1 and, 

the resulting sensitivity would be above 90%. The threshold selection can be fine-tuned by the 

requirement of NNT and Xpert saving. For Lunit and qXR, any threshold scores up to 0.8 resulted 

in sensitivity above 80%, but between 0.8 and 1, the sensitivity was more prone to change with 

different threshold cutoffs.  

The importance of using a more nuanced analytical framework for evaluation can be 

demonstrated by imagining different hypothetical case finding situations. For a program focused 

on capturing almost all people with TB and access to many rapid diagnostic tests, to identify at 

least 95% of Xpert confirmed patients (i.e. 95% sensitivity), qXR would save the most 

confirmatory  Xpert tests (55%),  CAD4TB would save 44% Xpert tests, followed by JF CXR-1, Lunit 

INSIGHT CXR and InferReadDR which would save 43%, 42%, and 41% of subsequent tests 

respectively (data and all the values plotted in Figure 1-a to Figure 1-f can be found in the 
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supplementary information). If we imagine another hypothetical case of a large active case 

finding program using CXR but with a much more limited budget and the need to reduce the 

numbers of follow-on Xpert tests by 75% compared to testing and accepting reducing sensitivity, 

qXR would have a sensitivity of 80.6% (79.2-81.8%), and INSIGHT a sensitivity of 76.6% (75.1-

77.9%). This is followed by InferReadDR with 69.3% (67.7-70.8%) sensitivity, JF-CXR 1 with 68.5% 

(67%-70%) sensitivity, and CAD4TB with 63.0% (61.4-64.6%) sensitivity.  

Furthermore, our results show that the overall performance of the five AI algorithms were 

different in different age groups, use cases and prior TB history. We hypothesize that the 

abnormalities on the chest due to age and prior TB history influenced the classification of active 

TB. However, the implication is that the threshold scores likely need to be different depending 

on the population tested and with sub populations despite recommendations this should not be 

the case(4, 24). In future studies, it may be possible to incorporate demographic and clinical data 

along with AI abnormality score to generate an individualized risk score for TB and improve 

performance.  

Our results document the performance of these five algorithms at one point in time. It is 

important to note that in a few years CAD4TB has produced 6 different versions each with 

improved performance (25). Since late 2019, when an evaluation of qXR V2 was used, Qure.ai 

has released V3. Two companies included in this evaluation with good performance had not been 

evaluated at all in peer reviewed journals. There are a number of other products that are in 

different stages of certification that may be viable alternatives in the coming months.(cite 

website) Unlike traditional diagnostic tests which take years to produce and update, the 

performance of AI improves incredibly fast. This means that future guidance on the use of AI from 

bodies like WHO must prepare for the speed of change to provide useful information to 

implementers as data from even 12 months ago is out of date. Multiple independent assessments 

will be needed and the ability to provide up to date information for end-users is critical.  

There are a number of limitations in our study. Due to logistic and budgetary constraints, we did 

not use culture as the reference standard, meaning that some people with Xpert-negative, 

culture-positive TB have incorrectly been labelled as not having TB. Most of the participants 
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included in the study had at least one TB symptom, limiting our ability to generate the results in 

asymptomatic individuals which is a use case that needs to be evaluated more (4). We did not 

conduct HIV testing because Bangladesh has a low HIV prevalence (5) but the performance 

among different sub-populations, especially among people living with HIV who often present 

with atypical radiological images needs to be better documented (26). Another limitation of our 

study is that each CXR was read by one Bangladeshi radiologist, not by a panel of radiologists nor 

by radiologists from different countries. However, the intended use of these AI algorithms is in 

resource constrained settings with few or no radiologists and neither resources nor time 

permitted multiple readings of high numbers of images. Lastly, we did not conduct this study 

prospectively and did not collect implementation data such as programmatic costs, setup, 

services, user experience, etc.  

Conclusions  

This independent evaluation addresses the accuracy of five commercially available AI algorithms 

in triaging patients who need more expensive confirmatory tests for TB by using a large dataset 

to which developers had no prior exposure. Our results demonstrate that all five AI algorithms 

outperformed experienced certified radiologists and could save follow-on Xpert testing and 

reduce NNT while maintain high sensitivity. ROC and precision recall curves are powerful tools 

for evaluation, however, additional metrics and analysis including our three-way plot of 

sensitivity, tests saved, and NNT with varying threshold scores will help implementers with 

threshold and software selection. Future studies should explore the correlation of AI scores and 

other demographic and contextual data in order to potentially generate more individualized risk 

scores for optimized performance.   

Data Availability  

The datasets used in this study can be available upon reasonable request, but images will not be 

provided to ensure use as an evaluation platform.  
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